
Evaluation of different response lengths for an LLM

Max Kaufmann
University of Maryland

kaufmann@terpmail.umd.edu
December 9th, 2024

Abstract

This project aims to evaluate and grade responses generated by large language
models (LLMs). Unlike prior research, this determines how much of a response
is needed to accurately evaluate. The primary objectives are (1) create a model
capable of accurate pairwise evaluations of different responses, (2) determine the
minimal response length required for accurate assessments. This work can be used
to select the best response an LLM gives, which has different applications.

1 Introduction

Full conversations with AI are now possible due to recent advancements powered by large language
models (LLMs). The popular use case for these models are for text generation, which output human-
like responses. They can be applied to a diverse set of tasks. They have reached a level to where many
people use them for question answering, solving complex problems, summarization, translation, and
much more. However, the responses an LLM gives can vary and can be non-deterministic. Some
of the outputs will not be optimal and could be irrelevant, incoherent, factually incorrect, or even
harmful. Also, the best model can change depending on the query. Being able to evaluate different
responses can improve accuracy and help align models [1]. Typical evaluation methods analyze
results after they have been completed. Two common uses of evaluation are for training the model,
like reinforcement learning from human feedback (RLHF), and for ranking items in search, like
retrieval-augmented generation systems.

However, there is a lack of research into evaluating a partial response. Prompt-guards can be used to
stop the response if it is detected to be harmful, but this doesn’t adjust responses [2]. Evaluations
of partial responses could be used to adjust in real-time interactions, where responses are streamed
to a user or in Voice AI. Another advantage of this would be to reduce computational resources. If
the response of an LLM can be judged before the full output, compute resources are not spent on
generating suboptimal text. The price and resources needed to power large models are a bottleneck in
their performance and scaling them.

This project examines the performance of three different models that can evaluate responses, and how
their performance changes when the length of the response is shortened.

2 Related Work

2.1 Methods to evaluate text

There was a need to evaluate and rank text-responses long-before the recent evolution of language
models. Early approaches relied heavily on surface-level metrics derived from statistical comparisons
to reference texts. For example, BLEU (Bilingual Evaluation Understudy) and ROUGE (Recall-
Oriented Understudy for Gisting Evaluation) emerged as in machine translation and summarization,
respectively. These metrics operate by measuring the overlap of n-grams between a candidate response
and a human-written reference. While they offered a quantifiable and reproducible way to gauge

model quality, their reliance on lexical overlap limited their capacity to capture the semantic meaning
or conversational appropriateness. For example, they struggle to consistently match paraphrases.

In the context of search engines, ranking search results is a critical step so that the top of the results
contain the most relevant and useful information. Traditional methods relied on keyword matching
and statistical metrics, such as Term Frequency-Inverse Document Frequency (TF-IDF) and BM25,
which prioritized documents based on the frequency and distribution of query terms. However, these
approaches often struggle with capturing the semantic relationships between the query and potential
results. In order to improve, ranking methods can be done to reorder which results are best. Modern
ranking methods have significantly evolved with the advent of machine learning and deep learning
techniques. Models like neural re-rankers utilize embeddings to measure semantic similarity between
a query and documents, enabling more nuanced interpretations of user intent. Additionally, factors
such as user behavior (click-through rates) and previous searches can provide contextual information
to refine rankings further. By leveraging these advancements, search engines can rank results more
effectively, providing users with a seamless and satisfying search experience that transcends simple
keyword matching.

Models for ranking can fall intro three categories: pointwise, pairwise, and listwise. Pointwise is
when a score for each item is computed, which could then be used to numerically rank. Regression
models can be used for pointwise. Pairwise are when two items are compared simultaneously, and
the output determines which is better. This is similar to Bradley-Terry style models, which are
probabilistic models for pairwise comparisons. Listwise can compare multiple items simultaneously,
and output the rank. These are apart of learning-to-rank methods, which are most commonly gradient
boosted decision trees. While those may be faster, neural network approaches can offer greater
performance [3].

For text tasks, sequential processing improves performance because the order of words determines
meaning. Recurrent Neural Networks allow for such data. They do this by maintaining a hidden
state that contains information about steps. However, vanishing gradients hurt performance of these
models. An improvement was Long Short-Term Memory Networks, which could remember long-
term dependencies in the sequential data. More recently, a new architecture called transformers
came out. This architecture relies entirely on self-attention mechanisms to process input sequences,
eliminating the need for recurrent layers. The model’s key innovation is the the multi-head self-
attention mechanism, which allows it to capture dependencies across sequences more efficiently
and in parallel. This attention mechanisms can create relationships between each of the inputs, and
how important that relationship is [4]. This approach is the foundation of the current state-of-the-art
models in natural language processing and other fields as well.

The current transformer architecture that powers ChatGPT is known as Generative Pre-Training. This
approach first trains a transformer model on a large corpus of text data, and then uses unsupervised
learning to predict the next words in a sequence. After that training stage is done, the model undergoes
supervised fine-tuning for downstream tasks.

Another transformer are Bidirectional Transformers (BERT). Unlike other transformers which process
the data uni-directionally (left-to-right or right-to-left), BERT can use the context on both sides to
make predictions. BERT is good for masked language modeling, which is like fill in the blank. The
masked words in the input are hidden, and the goal of the model is to predict what they are [5].
Another use case of BERT is to do ranking. Called BERTScore, this produces a similarity score for
each the embedding of each token in the candidate sentence against the embedding of each token
in the reference sentences. This goes beyond comparing comparing simple embeddings because it
utilizes the surrounding words to create contextual embeddings [6].

A great improvement to these models is to use reinforcement learning from human feedback. For
example, a model called InstructGPT had less than 1% of the GPT-3 parameters, but scored better on
human evaluations. InstructGPT was fine-tuned using reinforcement learning from human feedback.
The first stage was to create a reward-model. the reward-model is trained on pairwise classification
that comes from human annotations of which response is better, and outputs a scalar reward. Thus
the reward model is an evaluator, where responses that are more aligned are scored better. Then, this
reward model is used to further fine-tune the GPT’s response. This reward model plays a crucial part
because its ability to evaluate responses determines the style of the response [7].

2

Reward-models can be transformers themselves. The Skywork-Reward-Gemma-2 comes from
google’s gemma model. This model was fine-tuned using a careful dataset. While the model can still
do text-generation because the architecture comes from gemma, in order to evaluate the score the
logit on the BOS Token (start of sequence) is used as the output. Then for two different responses,
the one with the higher score is predicted to be better [8]. Another reward-model that is a transformer
is the PairRM. This comes from Microsoft’s DeBERTaV3. DeBERTa is similar to BERT, but it
uses disentangled attention. This separates the content embeddings and position embeddings into
two distinct vectors, and attention mechanism processes the two separately. The advantage is that
DeBERTa has relative position biases, which helps it better understand the relationships between
words when compared to absolute positions. PairRM does pairwise classification. It uses special
tokens to separate the prompt, first response, and second response. The model was trained to output a
positive number if the first response is better than the second response, and a negative number if the
second response is better, thus acting like a binary classifier. PairRM was fine-tuned on six different
human-preference datasets [1].

Rather than having a specific reward-model, LLMs have been used to evaluate text. One study that
popularized this was LLM-as-judge, which utilized prompt engineering to do pointwise score of a
response. This was shown to give better results than BLUE, ROGUE, and other metrics for their
respective task [9]. The prompt-engineering can influence how well these perform. Different tasks
did better with different prompts. Also, Chain-of-thought, where the LLM is first asked to generate
reasons for an evaluation before giving a score, give better response [10]. Pairwise comparisons can
also be used with LLMs, and can perform better than pointwise [11]. Another approach to uses LLMs
for evaluation is fine-tuned models specifically for judging. One such is Skywork-Critic-Llama-
3.1-8B SFR-Judge, which comes from Meta’s LLama 3. During the fine-tuning process, a specific
prompt template was used for the pairwise comparison. This model would then output "[[A]]" if the
first response was better, else it should do "[[B]]" [12]. Another fine-tuned LLM for judging was
SFR-Judge. This was fine-tuned to judge three ways: pointwise, pairwise, and binary classifications.
Unlike the Skywork-Reward-Gemma-2 or Skywork-Critic-LLAMA-3.1, SFR-Judge can generate
an explanation why it judged the way they did. This helps mitigate the black-box nature of many
other judge models because a human could look at the explanation SFR-Judge gave, instead of just a
numerical score [13]. Another way to fine-tune is to do self-taught models. One such Llama model
was fine-tuned by Meta, and only used synthetic training data to train itself [14]. These models that
were fine-tuned for evaluating text performed better than with the original weights of the model.

2.2 Datasets to evaluate text

The performance of a LLM heavily depends on the dataset it was trained on. One example is Hammer
2.0 models, which are fine-tuned from Qwen2.5 models. The Hammer 2.0 models were trained
on function calling datasets. The 7B version was able to outperform conversational-based models
10-100 times its size on Berkeley Function-Calling leaderboard [15]. RLHF datasets exist in many
different forms. One such is a dataset specifically for summarizing text, and using human annotations
to decide which which summary was better. This resulted in GPT models performing better when
asked to summarize [16]. The largest RLHF dataset comes from Chatbot Arena, which crowd
sources human preferences by having people vote which response they prefer on a website. As of
now, it has over 1 million pairwise comparisons. This dataset was compared to a subset of expert
raters, and the two were shown to be in agreement, which adds credibility to crowd sourcing human
annotation [17]. Datasets also exist for multi-way comparisons, which can help with ranking. The
Nectar dataset provides a 7-wise comparison framework—each prompt is paired with seven distinct
responses—allowing. The advantage of this dataset is that it allows to examine the researchers
fine-grained differences in quality and preference. A clear advantage of such multi-response settings
is that they encourage models to identify nuanced quality gradients rather than just picking a “winner”
between two candidates. However, managing and interpreting 7-way comparisons can be more
computationally and analytically complex, and it may be more challenging to create a clear gold
standard for evaluation, especially when human evaluators themselves vary in their preferences
[18]. Another dataset for training reward models is to encode responses into different attributes.
For example, UltraFeedback scores responses on instruction-following, truthfulness, honesty, and
helpfulness. The advantage here is the dataset’s fine-grained guidance, which can lead to highly
specialized reward models. For example, if a doctor used an AI assistant truthfulness would be much
more important than for an AI assistant a comedian uses [19].

3

Its commonly believed that the more data a machine learning model is trained on, the better it
will perform. However, specialized datasets that curate the best examples were shown to lead to
better performances. Skywork-Reward is a dataset that uses specific filtering strategies. This dataset
was used with the Skywork-Reward-Gemma-27B model, which is currently the top model on the
RewardBench dataset [8].

Another dataset specifically for LLM judges is LLM-BAR. This dataset is contains examples that is
meant to mislead an LLM evaluator. For example, a more engaging tone. This dataset is important
because it shows that while LLMs can be used to judge, they have biases based on the style the
response was given in. For example, for two responses where one is correct and one is wrong, if the
wrong was response was in the style people preferred, then LLM judges would have worse accuracy
on that compared to two responses in the same style [20]. On par with this, LLM judges can suffer
from self-enhancement bias, which is when a model prefers responses from itself over other models
[9]

A problem with human preferences is that they focus on the style and format a person prefers. The
RewardBench dataset was created to help mitigate this. It provides binary pairwise comparisons,
where one response was verifiably better than another [21].

3 Approach

3.1 Chosen Dataset

For real-time conversations, there is an inherent limitation due to the need for low-latency and
immediately give a response. At the very least, responses should be evaluated for their objectiveness.
Rewardbench does that by having a verifiably correct answer. The dataset consistent of 5 sections:
Chat, which tests on basic open-ended questions, Chat Hard, which tests on trick questions and
subtitles, Safety, which tests on LLM’s refusal to answer, Reasoning, which tests on code and
reasoning abilities, and Prior Sets, which test on preexisting human preference datasets. For this
research, all 5123 items in the dataset were used to calculate accuracy.

3.2 Chosen models

The first model that was tested was Skywork-Reward-Gemma-2-27B. This model is finetuned, and
does pointwise comparison. This model has around 27 billion parameters. The second model was
using Skywork-Critic-llama-3.1-8b. This uses a fine-tuned LLM-as-judge and a pairwise comparison
approach The model has 8 billion parameters. The third model was using PairRM. This is finetuned
using pairwise comparison, and outputs a numerical binary classification. The model size is the
smallest, with 400 million parameters. The rationale for picking these models is that they are all of
different sizes, and use a different method.

3.3 Testing methology

The metric measured was binary accuracy. The RewardBench has a total of 5123 samples. The
lengths of the response taken were 100%, 75%, 50%, 25%, 10%, and 5%. The part of the response
that was came from the start. To get the length, the characters were multiplied by the percent taken,
and rounded down. The average response was 921 characters, which for Llama models will be about
230 tokens. However, by taking the proportion before tokenization, this standardized it across models.
The compute ran on NVIDIA GPUs hosted on runpod.io, and the configuration on hugging face of
each model was used.

4

4 Results

Figure 1: Response Lengths vs Accuracy for models

Table 1: Accuracy and P-value comparisons across models and response lengths.

Model Response Length Percent Accuracy P-value
Skywork-Reward-Gemma-2-27B-v0.2 100 0.938 5e-324

75 0.826 5e-324
50 0.747 5e-285
25 0.676 4e-143
10 0.604 4e-50
5 0.538 7e-08

Skywork-Critic-llama-3.1-8b 100 0.925 5e-324
75 0.885 5e-324
50 0.855 5e-324
25 0.8 5e-324
10 0.717 2e-219
5 0.708 9e-200

PairRM 100 0.735 3e-257
75 0.701 1e-186
50 0.665 6e-125
25 0.612 1e-75
10 0.533 2e-06
5 0.496 6e-01

5 Conclusion

This research showcases the capability of large language models to do pairwise comparisons between
good and bad responses. The models can also be accurate, even when the input was heavily truncated.
For all three models, there was statistical evidence that accurate evaluations can be made with as little
as 10% of the original response length, which is about be 18–19 words. The data also showed a clear
trend that as response length shortens, so does accuracy.

5

6 Further Work

The first and simple improvement of this is testing with different models to see if different methods of
fine-tuning or model size made a difference. Also, it could be insightful to analyze different datasets
like UltraFeedback or Nectar.

The goal of this research was initially to create a general framework that could be used to evaluate and
adjust responses for a conversation over voice. An LLM capable of assessing its responses on-the-fly
can lead to better interactions by interjecting feedback or having a chance to correct and clarify itself.
An LLM continues generating tokens without considering new ideas while generating. When people
speak, they assess themselves while talking. If an LLM could mirror a human conversation in this
way, the responses could be adjusted and improved.

However, to minimize latency, the text-generation model and evaluation model should be deployed in
the same region. Also, all of the models used here are fine-tuned. This makes them unpopular and
there isn’t a generic serverless inference for this. In order to use these models, they would have to be
self-hosted, which is quite costly. Running the tests for these models for just a couple hours costed
$80 dollars. For someone that wants to deploy a system like this, they might have to pay thousands of
dollars a month to have these models ready to go 24/7.

The PairRM model tested is apart of a project called LLM-Blender, which uses an ensemble of models
to generate responses, pick the best-n responses, and then fuse them together to create a response that
uses the best parts of each response. The evidence that ensembles of models can improve responses
and evaluators can use just a sentence to determine the better result indicates responses could be
improved mid-generation in a real-time setting.

6

References

[1] Jiang, Dongfu. “LLM-Blender: Ensembling Large Language Models with Pairwise Ranking and Generative
Fusion.” Allen Institute for Artificial Intelligence, June 2023. https://arxiv.org/pdf/2306.02561.

[2] OpenAI. “GPT-4o Mini: Advancing Cost-Efficient Intelligence,” July 2024. https://openai.com/index/gpt-4o-
mini-advancing-cost-efficient-intelligence/.

[3] Burges, Christopher. “From RankNet to LambdaRank to LambdaMART: An Overview.” Microsoft Research
Technical Report, January 2010. https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/MSR-
TR-2010-82.pdf.

[4] Vaswani, Ashish. “Attention Is All You Need.” Google Brain, 2017. https://arxiv.org/abs/1706.03762.

[5] Devlin, Jacob. “BERT: Pre-Training of Deep Bidirectional Transformers for Language Understanding,”
October 2018. https://arxiv.org/abs/1810.04805.

[6] Zhang, Tianyi. “BERTSCORE: EVALUATING TEXT GENERATION WITH BERT,” February 2020.
https://arxiv.org/pdf/1904.09675.

[7] OpenAI. “Training Language Models to Follow Instructions with Human Feedback,” March 2022.
https://arxiv.org/abs/2203.02155.

[8] Liu, Chris. “Skywork-Reward: Bag of Tricks for Reward Modeling in LLMs.” Skywork, October 2024.
https://arxiv.org/abs/2410.18451.

[9] Zheng, Lianmin. “Judging LLM-as-a-Judge with MT-Bench and Chatbot Arena,” June 2023.
https://arxiv.org/abs/2306.05685.

[10] Kaufmann, M. “AI Self Eval,” May 2024. https://github.com/mkaufmann84/ai-self-eval.

[11] Qin, Zhen. “Large Language Models Are Effective Text Rankers with Pairwise Ranking Prompting,” March
2024. https://arxiv.org/pdf/2306.17563.

[11] Wang, Tianlu. “Self-Taught Evaluators,” August 2024. https://arxiv.org/pdf/2408.02666.

[12] Skywork. “Skywork/Skywork-Critic-Llama-3.1-8B,” September 2024.
https://huggingface.co/Skywork/Skywork-Critic-Llama-3.1-8B.

[13] Wang, Peifeng. “DIRECT JUDGEMENT PREFERENCE OPTIMIZATION,” September 2024.
https://arxiv.org/pdf/2409.14664.

[14] Wang, Tianlu. “Self-Taught Evaluators,” August 2024. https://arxiv.org/pdf/2408.02666.

[15] MadeAgents. “Hammer2.0-7b,” September 2024. https://huggingface.co/MadeAgents/Hammer2.0-
7b/tree/main.

[16] OpenAI. “Learning to Summarize from Human Feedback,” February. https://arxiv.org/pdf/2009.01325.

[17] Chiang, Wei-Lin. “Chatbot Arena: An Open Platform for Evaluating LLMs by Human Preference,” March
2024. https://arxiv.org/abs/2403.04132.

[18] Zhu, Banghua. “Berkeley-Nest/Nectar,” November 2023. https://huggingface.co/datasets/berkeley-
nest/Nectar?row=0.

[19] Cui, Ganqu. “Openbmb/UltraFeedback,” 2023. https://huggingface.co/datasets/openbmb/UltraFeedback?row=1.

[20] Zeng, Zhiyuan. “Evaluating Large Language Models at Evaluating Instruction Following,” October 2023.
https://arxiv.org/abs/2310.07641.

[21] Lambert, Nathan. “RewardBench: Evaluating Reward Models for Language Modeling,” March 2024.
https://arxiv.org/abs/2403.13787.

7

	Introduction
	Related Work
	Methods to evaluate text
	Datasets to evaluate text

	Approach
	Chosen Dataset
	Chosen models
	Testing methology

	Results
	Conclusion
	Further Work

